Toroidal Momentum Confinement in Tokamaks

نویسندگان

  • K. C. Shaing
  • J. D. Callen
  • C. C. Hegna
  • W. A. Houlberg
چکیده

Theories for the toroidal momentum confinement in tokamaks have been developed. It is shown that the logarithmic gradient of the toroidal flow is a linear combination of logarithmic gradients of the plasma pressure and the temperature in neoclassical quasilinear theory. The fluctuation-induced toroidal stress consists of a diffusion flux, a convective flux, and a residual flux. The effects of a variety of magneto-hydrodynamic (MHD) activity, such as magnetic islands, and un stable MHD modes, on toroidal plasma rotation are also addressed. The key mechanism for the toroidal flow damping is the broken toroidal symmetry in |B | that results from MHD activities. Here, B is the magnetic field. The symmetry -breaking-induced toroidal viscosity also provides a mechanism to determine the island rotation frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spécialité : Physique Des Plasmas Contents

The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an underst...

متن کامل

Breakdown of adiabatic invariance in spherical tokamaks

Thermal ions in spherical tokamaks have two adiabatic invariants: the magnetic moment and the longitudinal invariant. For hot ions, variations in magnetic-field strength over a gyro period can become sufficiently large to cause breakdown of the adiabatic invariance. The magnetic moment is more sensitive to perturbations than the longitudinal invariant and there exists an intermediate regime, su...

متن کامل

Toroidal flow stablization of disruptive high b tokamaks

Disruptive high b tokamak plasmas can be stabilized by the addition of a sheared toroidal flow. Nonlinear simulations demonstrate that confinement in flow-free high b tokamaks is rapidly destroyed by growing fingers of hot plasma that jet out from the center of the discharge to the wall. The added toroidal flow eliminates the growing fingers, maintaining confinement. As b increases further, the...

متن کامل

Theoretical Study of Ion Toroidal Rotation in the Presence of Lower Hybrid Current Drive in a Tokamak

In this thesis, the effect of the lower hybrid current drive on ion toroidal rotation in a tokamak is investigated theoretically. Lower hybrid frequency waves are utilized to drive non-inductive current for steady state tokamaks and ion toroidal rotation is used to control disruptions and improve confinement. It has been observed in many tokamaks that lower hybrid waves can change the ion toroi...

متن کامل

Numerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks

Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004